Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling
نویسندگان
چکیده
We recently reported that maternal antibiotic treatment (MAT) of mice in the last days of pregnancy and during lactation dramatically alters the density and composition of the gastrointestinal microbiota of their infants. MAT infants also exhibited enhanced susceptibility to a systemic viral infection and altered adaptive immune cell activation phenotype and function. CD8+ effector T cells from MAT infants consistently demonstrate an inability to sustain interferon gamma (IFN-γ) production in vivo following vaccinia virus infection and in vitro upon T cell receptor (TCR) stimulation. We hypothesize that T cells developing in infant mice with gastrointestinal microbiota dysbiosis and insufficient toll-like receptor (TLR) exposure alters immune responsiveness associated with intrinsic T cell defects in the TCR signaling pathway and compromised T cell effector function. To evaluate this, splenic T cells from day of life 15 MAT infant mice were stimulated in vitro with anti-CD3 and anti-CD28 antibodies prior to examining the expression of ZAP-70, phosphorylated ZAP-70, phospho-Erk-1/2, c-Rel, total protein tyrosine phosphorylation, and IFN-γ production. We determine that MAT infant CD8+ T cells fail to sustain total protein tyrosine phosphorylation and Erk1/2 activation. Lipopolysaccharide treatment in vitro and in vivo, partially restored IFN-γ production in MAT effector CD8+ T cells and reduced mortality typically observed in MAT mice following systemic viral infection. Our results demonstrate a surprising dependence on the gastrointestinal microbiome and TLR ligand stimulation toward shaping optimal CD8+ T cell function during infancy.
منابع مشابه
Modeling human enteric dysbiosis and rotavirus immunity in gnotobiotic pigs
BACKGROUND Rotavirus vaccines have poor efficacy in infants from low- and middle-income countries. Gut microbiota is thought to influence the immune response to oral vaccines. Thus, we developed a gnotobiotic (Gn) pig model of enteric dysbiosis to study the effects of human gut microbiota (HGM) on immune responses to rotavirus vaccination, and the effects of rotavirus challenge on the HGM by co...
متن کاملThe Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds
Background. There has been an increasing interest in the use of volatile organic compounds (VOCs) as potential surrogate markers of gut dysbiosis in gastrointestinal disease. Gut dysbiosis occurs when pathological imbalances in gut bacterial colonies precipitate disease and has been linked to the dysmetabolism of bile acids (BA) in the gut. BA metabolites as a result of microbial transformation...
متن کاملDual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis.
Homeostasis of the gastrointestinal (GI) tract is controlled by complex interactions between epithelial and immune cells and the resident microbiota. Here, we studied the role of Wnt signaling in GI homeostasis using Disheveled 1 knockout (Dvl1-/-) mice, which display an increase in whole gut transit time. This phenotype is associated with a reduction and mislocalization of Paneth cells and an ...
متن کاملWe are not alone: a case for the human microbiome in extra intestinal diseases
BACKGROUND "Dysbiosis" in the gut microbiome has been implicated in auto-immune diseases, in inflammatory diseases, in some cancers and mental disorders. The challenge is to unravel the cellular and molecular basis of dysbiosis so as to understand the disease manifestation. MAIN BODY Next generation sequencing and genome enabled technologies have led to the establishment of the composition of...
متن کاملGut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors
The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory ...
متن کامل